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ABSTRACT 

In this paper, we show that Shalvi and Weinstein’s 
blind deconvolution criteria are applicable for finite 
SNR regardless of channels having zeros on the unit cir- 
cle or not. The associated deconvolution filter is stable 
with a nonlinear relation to the nonblind MMSE equal- 
izer and capable of performing perfect phase equaliza- 
tion for finite SNR. 

1. INTRODUCTION 

Blind deconvolution (equalization) is a signal process- 
ing procedure to restore a source signal u(n) from a 
given set of measurements 

.(n) = .(n) * h(n) + w ( n )  = h(IC)u(n - IC) + w ( n )  

(1) 
k 

where h(n) is an unknown linear time-invariant (LTI) 
system (channel) and w ( n )  is the measurement noise. 
The blind deconvolution problem occurs in a variety 
of applications such as communications, seismic explo- 
ration, ultrasonic nondestructive evaluation and speech 
modeling. 

Let v(n) be a deconvolution filter and e(n) be the 
corresponding deconvolved signal, i.e., 

e(n) = ~ ( n )  * v(n) = u(n) * g ( n )  + w ( n )  * v(n) (2) 

where 
dn) = h(n) * v ( n )  (3) 

is the overall system after deconvolution. Shalvi and 
Weinstein [l] find the optimum ~ ( n )  by maximizing 
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where C,,,{e(n)} denotes the ( p  + q)th-order cumulant 
of (real or complex) e(n) ,  i.e., 

CP,,{e(n)} = cum{e(n), . . . ,e(n) ,e*(n) ,  . . . ,e*(n)} -- 
p terms q terms 

(5) 
in which the superscript ‘*’ denotes complex conjuga- 
tion. The criteria Jp,q include Wiggins’ criterion and 
Donoho’s criteria as special cases [l]. 

It has been shown in [l] that the optimum v(n) asso- 
ciated with Jp,g satisfies the zero forcing (ZF) condition 
(i.e., g ( n )  = aS(n - T ) ) ,  provided that h(n) has no ze- 
ros on the unit circle (i.e., the inverse system of h(n)  is 
stable) and that the signal-to-noise ratio 

equals infinity. In practical applications, however, SNR 
is finite and the behavior of the optimum w(n) associ- 
ated with Jp,q is thus affected by the noise w(n) .  For 
the case of real signals, Feng and Chi [2] reported a per- 
formance analysis of Jp,q for finite SNR when h(n)  has 
no zeros on the unit circle. In this paper, we further ex- 
tend their analysis to the case of complex signals with 
h(n) allowed to  have zeros on the unit circle. We show 
that stable w(n) is existent and related to the nonblind 
minimum mean-square error (MMSE) equalizer [3] in a 
nonlinear manner along with some properties regarding 
the behavior of U(.). 

2. MODEL ASSUMPTIONS AND REVIEW 
OF THE MMSE EQUALIZER 

For the measurements ~ ( n )  given by (l), let us make 
the following assumptions: 

( A l )  The channel h(n) is stable with frequency re- 
sponse H ( w )  = 0 for w E R Z  c [--7r,r), i.e., 
Rz = { w l H ( w )  = 0, -7r 5 w < 7 r } .  
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(A2) The source signal u(n)  is a zero-mean, indepen- 
dent identically distributed (i.i.d.), non-Gaussian 
random process with variance 0: = Cl,l{u(n)}. 

(A3) The noise ~ ( n )  is white Gaussian with variance 
0; = Cl,l{w(n)} and statistically independent of 
4 n ) .  

The assumption ( A l )  implies that the inverse system of 
h(n) is unstable when Rz # 0 (an empty set), because 
l / H ( w )  = 03 for w E Oz. This also means that stable 
deconvolution filter satisfying the ZF condition does 
not exist when RZ # 0. Next, let us briefly review the 
MMSE equalizer. 

The (infinite-length) MMSE equalizer, which mini- 
mizes the mean square error (MSE) E{Iu(n) -e(n)l’}, 
is a (noncausal) Wiener deconvolution filter with fre- 
quency response given by [4] 

It can be readily seen, from (7), that the MMSE 
equalizer, ‘uMsE(~) ,  is a perfect phase equalizer (since 
a r g [ V i ~ ~ ( w ) ]  = - arg[H(w)]) and always stable for fi- 
nite SNR (since 0; # 0) regardless of Rz = 0 or 
RZ # 0. 

3. ANALYTIC RESULTS 

In this section, the behavior of the deconvolution filter 
v(n) associated with Jp,g is analyzed for finite SNR. 

A. Behavior of the Deconvolution Filter 
Assume that the length of ~ ( n )  is doubly infinite so 

that the analysis of the behavior of v(n) can be per- 
formed without taking the effect of finite-length trun- 
cation of v(n) into account [l]. With regard to ( A l ) ,  a 
property about the existence of stable v(n) associated 
with Jp,q is as follows. 

Property 1. When SNR is finite, stable optimum de- 
convolution filter v(n) associated with Jp,q exists with 
frequency response 

V(w) = 0, for w E RZ (8) 

Moreover, a connection between v(n) and V M S E ( ~ , )  is 
established as follows: 

Property 2. The deconvolution filter w(n) associated 
with Jp,q is related to the MMSE equalizer W M S E ( ~ )  via 

v(n) A .  { d ( n )  * ~ M S E ( ~ ) )  (9) 

According to (8), a result about the phase response 
arg[V(w)] of V ( w )  is as follows: 

Property 3. The optimum phase response arg[V(w)] 
associated with the maximum of Jp,q is given by 

arg[V(w)] = - arg[H(w)] - w[ + K ,  for w 4 RZ (12) 

0 where [ and K are constants. 

This property implies that the deconvolution filter 
V(w) completely cancels (or equalizes) the channel’s 
phase distortion (up to a time delay [ and a constant 
phase shift K )  for w RZ and thus, like the MMSE 
equalizer, it performs as a perfect, phase equalizer. 

Let GZP(W) be a zero-phase system as follows: 

GZP(W) = IG(w)l = G(w) . exp{j(wt - K ) }  (13) 

(since (12)). Then the impulse response, gzp(n), of 
Gzp(w) possesses the following property: 
Property 4. The zero-phase overall system gzp(n) 
associated with Jp,q is like an autocorrelation function 
with gzp(n) = g&,(-n) and 

gzp(0) > Iszp(n)I, V n  # 0 (14) 

s(n> = 9zp(n - 0 . exP{jK) (by (13)) (15) 

0 
This property exhibits the waveshape of g(n) since 

Specifically, 1g(n)l has a unique maximum at the index 
n = [ and meanwhile is symmetric with respect to 
n = <. 

B. Algorithm for Computing the Theoretical 
Deconvolution Filter 

To verify the proposed analytic results, let us present 
the following FFT based iterative algorithm for ob- 
taining the theoretical w(n) associated with Jp,q from 
VM~E(U) given by (7) according to Property 2. 

Aloorithm 1: 

(Sl) Set i = 0. Choose an initial guess v[’](n) for v(n). 
( ~ 2 )  Set i = i + 1. Compute g[i-’l(n) = h(n) * 

di-’I(n). Compute d ( n )  using (10) and (11) with 
g ( n )  = g[Z-l](n) and then compute its L-point 
DFT D(wk = 27rk/L) using FFT. 
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(S3) Compute c ( w k )  = D(w~).VMSE(W~) (see (9)) and 
then compute its L-point inverse DFT G(n) using 
FFT. 

If E, 
Jw[Z] (n)  - di-l] (n)l’ > E (a preassigned tolerance 
for convergence), then go to (S2); otherwise, the 
theoretical w(n) = di] (n)  is obtained. 

( ~ 4 )  Compute dil(n) = ~ ( n ) / J m .  

A remark regarding Algorithm 1 is as follows: 

(Rl )  Algorithm 1 is computationally efficient and never 
limited by the length of w(n) as long as the FFT 
length L is chosen sufficiently large so that alias- 
ing effects on the resultant w(n) are negligible. 

Next, let us present some simulation results to  verify 
the preceding analytic results. 

4. COMPUTER SIMULATION 

In the simulation, the source signal u(n) was assumed 
to be a 4-QAM signal and the channel H ( z )  = H l ( z )  . 
H a ( z )  was taken from [5] where H l ( z )  and H~(z) were 
causal FIR filters with filter coefficients (1, 0, -1} and 

0.03, 0.07}, respectively. The deconvolution filter v(n) 
was approximated by a causal FIR filter G(n) of order 
equal to 30. An iterative gradient-type optimization al- 
gorithm with initial condition G ( n )  = 6(n-15) was used 
to find the maximum of J Z , ~  ( p  = q = 2) and the rele- 
vant estimate 2(n). Then, the average of thirty G(n)’s, 
denoted Gave(n), from thirty independent runs for data 
length equal to  8000 and SNR = 20 dB (complex white 
Gaussian noise) was obtained. On the other hand, the 
theoretical u ( n )  was obtained using Algorithm 1 with 
d0](n)  = 6(n), L = 1024 and E = low5.  

Figures l ( a )  and l (b)  depict the magnitude response 
IH(w)l and the principle value, ARG[H(w)], of the 
phase response arg[H(w)], respectively, for w E [-T, 7r] 

where a linear phase term in Figure l (b)  was removed 
for clarity. As indicated in Figures l(a) and l (b) ,  
IH(w)l = 0 for w = 0 and f~ and ARG[H(w)] has 
a discontinuity of T at  w = 0 and a discontinuity of 
-T at w = f 7 r  due to  the two zeros of H l ( z )  on 
the unit circle ( z  = 3~1) .  Figures 2(a), 2(b) and 2(c) 
show, respectively, the real parts, magnitude responses 
and phase responses of the obtained Gave(n)  (dashed 
lines) and the theoretical w(n) (solid lines), while their 
imaginary parts are not displayed because they are al- 
most zero. Note that the scale factor and time de- 
lay between Gave(n) and w(n) have been artificially re- 
moved. Figure 2(a) reveals that w(n) may be approx- 
imated well by a long-length FIR filter G(n) of order 

(0.04, -0.05, 0.07, -0.21, -0.5, 0.72, 0.36, 0, 0.21, 

equal to about 80, and that the theoretical w(n) ob- 
tained by Algorithm 1 can serve as a prediction for 
G(n). Moreover, from Figures 2(b), 2(c) and l (b) ,  one 
can see that JV(w = 0)l = IV(w = k7r)l = 0 and 
ARG[V(w)] = -ARG[H(w)], and that both Ipaye(w)I 
and ARG[Pave(w)] are close to  IV(w)l and ARG[V(w)], 
respectively, except for those around w = 0 and ~ C T .  
The large magnitude and phase errors around w = 0 
and f . r r  in Figures 2(b) and 2(c) result from the low 
magnitude of H ( w )  around these frequencies (see Fig- 
ure l(a)) or, equivalently, the low signal power of these 
frequency components in the data x(n). As a conse- 
quence, the results in Figures 2(a), 2(b) and 2(c) are 
consistent with Properties 1 and 3. 

By computing the overall system estimate gave(n) = 
h(n) * Gave(n) and the theoretical g(n) using the theo- 
retical w(n), Figure 2(d) shows I & P ( n ) l  (dashed line) 
and Igzp(n)l (solid line) according to (13). From Fig- 
ure 2(d), one can see that I&p(n)I  is quite close to 
(gzp(n)1 and approaches S(n), implying that G(n) per- 
forms intersymbol interference (ISI) reduction well for 
this case. Moreover, I &  (n)  I is approximately symmet- 
ric and I&p(O)I > I & p ( n ) I ,  n # 0 ,  which are consistent 
with Property 4. 

5. CONCLUSIONS 

The proposed analytic results about the performance of 
the blind deconvolution criteria Jp,q include the guar- 
anteed stability of the deconvolution filter w(n) regard- 
less of the channel h(n) having zeros on the unit circle 
or not, the connection of v(n) with the nonblind MMSE 
equalizer W M S E ( ~ )  and the capability of perfect phase 
equalization for finite SNR, as summarized in Proper- 
ties 1 through 4. These analytic results are helpful to 
realizing the behavior of w(n) associated with Jp,q .  
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Figure 1. (a) The magnitude response and (b) the phase response of the channel h(n ) .  

I '  I 2.5 

= 2  
0.4 W 

v) 

8 g 0.2 v) 

2 
a 0  

1.5 

3 1  
z 
2 0.5 
I 

W 
n 

a k 
w 

-0.2 

I I 
-0.4' - I 

-40 -20 0 20 
SAMPLE NUMBER (n) 

(4 

-2 0 2 
RADIAN FREQUENCY (w) 

(a 

-2 0 2 
RADIAN FREQUENCY (0) 

(b) 

I 
-1 0 0 10 

SAMPLE NUMBER (n) 

(d) 

Figure 2. (a) The real parts, (b) the magnitude responses and (c) the phase responses of Gave(n) (dashed lines) 
and w(n) (solid lines); (d) I&p(n)l (dashed line) and Igzp(n)( (solid line). 
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